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Abstract 

Newtonian cosmology is examined fundamentally and an approach initiated by J. V. 
Narlikar (1963) is pursued in considerable detail. Homogeneous models expanding with 
spin and shear are shown unequivocally to possess a singularity. Nevertheless in the 
presence of sufficient spin they can pass through a well-behaved density maximum at 
some other epoch. Discrepancies between the conclusions of Narlikar and those of 
Heckmann & Shucking (1955, 1956) are cleared up. Representative solutions, including 
models tentatively matched to the actual universe are illustrated. 

1. Basic Postulates and Equations 

(a) Introduction 

In the absence of explicit solutions of  Einstein's equations for expanding 
rotating world models the Newtonian approach is likely to give useful 
insight. The problem of  a universe expanding with shear and rotation was 
first tackled from the Newtonian point of  view by Heckmann & Shucking 
(1955, 1956), following the early work of  McCrea & Milne (1934) for 
isotropic Newtonian models. Heckmann and Shucking concluded that the 
occurrence of  a singularity could be avoided in Newtonian models provided 
that a universal spin was present. This was later contested by Narlikar 
(1963) who claimed that it was not possible to get non-singular oscillating 
models on the basis of  Newtonian theory. 

The present work confirms that Narlikar was right on the basis of  his 
own assumptions which appear to be physically more realistic than those 
of  Heckmann and Shucking. H o  7r Narlikar 's  case was far from being 
made and indeed incorrect at a vital point. Accepting Narlikar 's  basic 
approach we pursue the analysis of  Newtonian universes to considerably 
greater depths and examine the evolutionary properties of  representative 
solutions. The nature of  the Newtonian singularity is discussed in some 
detail, and the discrepancy between Narlikar 's  qualitative conclusion and 
that of  Heckmann and Shucking is explained. Many of the results are of  
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current interest in cosmology and specific models are tentatively matched 
to the present properties of  the actual universe.'~ 

(b) Fundamentals o f  the Present Approach 

Our Newtonian universe will be taken to be infinite, homogeneous and 
euclidean, containing pressureless dust (fundamental particles) of  uniform 
density p(t)  at Newtonian time t. We take any such fundamental particle O 
to be the origin of a cartesian frame of reference, of  coordinates x~ (i = 1,2, 3). 
A similar system set up at the fundamental particle O', with axes parallel 
to those at O, is related by the euclidean transformation 

x~ = Xi + x~' (1.1) 

where X~ are the coordinates of  O' in O's system. Also, the velocity com- 
ponents of  a test particle P relative to the two fundamental frames will 
satisfy the relation of Newtonian kinematics: 

~ = ~ + ~ '  (1.2)  

a dot indicating differentiation with respect to t. 
We now suppose that the postulated homogeneity includes a 'cosmo- 

logical principle' on the following basis. At any epoch t the motion of  world 
matter relative to an observer comoving with O is to be the same as that 
relative to an observer at O'. Hence, if 2i = v~(x~), then hi' = vi(xj) .  From 
(1.1), (1.2) it then follows that 

v,(xj + x / )  = v,(xj) + v,(xD (1.3) 

so that v~(xj) must be a linear function of  x j, the coefficients being in general 
functions of  t. That is 

5ci = H~(t )  x j  (1.4) 

In general the motion given by (1.4) will be subject to shear, the shear 
tensor q~j(t) being 

q,j = �89 + Hj~) - �89 = qj~ (1.5) 
with 

q ,  - 0. (1.6) 

There will also in general be spin, the spin tensor ~o,j(t) being 

1 H - (1.7) ~o .  = 3( . /-t~,) = - ~ o ~ ,  

It follows from (1.4) that the acceleration 5?~ relative to the typical 
fundamental frame of origin O is also linear in x j, having the form 

Xi = A i j  x j  (1.8) 

where 

Ai j  = I)[ij q- Hik Hkj (1.9) 

"~ A brief report of this work has already appeared (Davidson and Evans, 1971). 
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In applying Newtonian mechanics and gravitation to the infinite system 
postulated, one approach can now be made as follows. If  we assume that 
a unique Newtonian frame, or absolute space, exists then in accordance 
with (1.8) we can find a fundamental particle O' which at time t has zero 
acceleration relative to such a frame. Thus if absolute space has acceleration 
f~ in O's system, we can find an O' of coordinates X~ such that 

A. xj =A 

provided the motion of the dust system is not degenerate, i.e., detAij ~ 0. 
Because the dust system is infinite and homogeneous it is at least plausible 
to assume that O' will always have zero acceleration in absolute space. 
We can then re-label O' as O, a fundamental particle lying permanently at 
the origin of the unique Newtonian frame in which the accelerations and 
forces are absolute. 

Alternatively, one might assume that any fundamental frame is a valid 
Newtonian frame, again because of the postulated homogeneity of the 
dust system and its infinite extent. This would mean that Newtonian 
frames could exist in relative acceleration. In turn this would require the 
surrender of the concepts of absolute acceleration and absolute force, as 
follows. In any pair of fundamental frames treated as Newtonian, the 
second law of  motion would hold in the form 

Ft=Y~, F ( = Y l '  (1.10) 

where F, and F,' are the Newtonian forces per unit mass. Moreover, the 
accelerations of a test particle in two such frames would be connected by 

Y~=X~+Y~' (1.11) 

on differentiating (1.2). Therefore, assuming the usual invariant and 
constant character of Newtonian mass the forces F~, F~' in the two frames 
would stand in the relation 

F, = ~,  + r , '  (1.12) 

In this alternative approach to Newtonian cosmology, therefore, the 
fictitious forces J(~ would play an important role in preserving the equiva- 
lence of the dynamical laws in all Newtonian frames. In this paper the 
fundamental particles themselves will be assumed to be under mutual 
gravitational forces only. Hence in the present observable universe, even 
at the distance of the observable horizon associated with the Hubble law, 
the fictitious force J~l would have a magnitude of about 10 -9 cgs only. 
The non-uniqueness of the cosmic Newtonian frame would therefore have 
negligible effect on Newtonian laboratory physics at the present epoch. 
On the cosmic scale of the dust medium itself the fictitious force ,~, is of  
course not negligible, since it is of  the same order and indeed of the same 
nature as the gravitational force F, that we shall be considering. 
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(c) Equations o f  Motion 

Let F~ be the Newtonian gravitational field intensity at the point x~, 
either in the unique Newtonian frame first considered in (b) or alternatively 
in any fundamental Newtonian frame. Then Newton's second law of 
motion in that frame is the Euler equation for the fluid of dust particles, 
having the form 

F~ = 2~ = A~jx~ (1.13) 

in accordance with (1.8). 
Solutions for the fluid motion will be derived in the present paper for the 

special case when A~ is an isotropic tensor. Since the universe is assumed 
infinite and homogeneous, the combination of the inverse square law of 
direct attraction and the mass symmetry about the Newtonian origin make 
it plausible that the gravitational field should also be symmetric about the 
origin. In this case, by the Gauss theorem 

F~ = - -~r~Gpx~ (1.14) 

G being the Newtonian gravitational constant. Hence 

A~j -- I~ j  + H~k Hki = --~rcGp 6~j (1.15) 

If we add the continuity equation for a uniform fluid we get 

P-" + 2~.~ = 0  
P 

where ,i indicates partial differentiation with respect to x~. That is 

-P + H,, = 0 (1.16) 
P 

Elimination of p between (1.15) and (1.16) provides nine equations for the 
nine H~j, and with given initial conditions the problem is then determinate. 

As we have stated, the solutions to the Newtonian problem to be given 
in the present paper are special, to the extent of being based on an isotropic 
A~j tensor, or a gravitational field that is spherical in the Newtonian 
reference frame. Nevertheless, the field in any real homogeneous universe 
seems likely to be nearly spherical in a wide range of cosmic motions which 
include spin and shear. Essentially this is because the gravitational effect 
of motion (according to relativity theory) is so much less than that of mass. 
Therefore our results should provide qualitative insight into the general 
problem. Zeldovich (1965) and more recently Shikin (1971) have also given 
Newtonian solutions to the cosmological problem, but neither considered 
the possibility of spin which we do here. 

The work of Heckmann & Shucking (1955, 1956) should be mentioned 
in the present discussion. It will be noted that in our own analysis there 
has been no necessity to introduce a Newtonian potential. Heckmann and 
Shucking used a potential function ~b satisfying the Poisson equation 
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c~,u = 4nGp .  They also assumed the integrability condition q~,*i = ~b,j, 
( cur lF= 0), but did not have the equivalent of  our (1.15). In the absence 
of boundary conditions in a homogeneous infinite system five other 
equations were therefore required to fully determine the nine q~,,~. To solve 
the problem Heckmann and Shucking assumed that the five independent 
components of the shear tensor qij could be assigned arbitrarily, and in 
practice their solutions were obtained on the assumption that qij = 0 for 
all t. Heckmann and Shucking's approach is therefore quite different from 
ours. In our present formulation the evolution of shear is determined from 
the initial conditions and, as we shall show, shear always develops in the 
presence of spin. In both these respects our results are in agreement with 
general relativity. Moreover we shall show that under our present formula- 
tion the assumption that qtj = 0 for all t would violate angular momentum 
conservation (see Section 2(a)). It is precisely this assumption that is 
responsible for Heckmann and Shucking's conclusion that spin can prevent 
a singularity (see Section l(e)). 

(d) Use o f  Lagrangian Coordinates 

With given initial conditions the equations (1.4)determine a comoving 
coordinate system xi ~ given by 

x~ = a~(t)  x j  ~ (1.17) 

such that 

d~j = H~kakj (1.18) 

If  to is a given value of t we can in fact arrange that 

a9. ,j =- a~j(to) = ~Sij (1.19) 

so that the x~ ~ are the values ofx~ for the given particle at t = to (Lagrangian 
coordinates). Equations (1.18), (1.19) then uniquely determine the a~j in 
terms of the H~j, yielding the Eulerian coordinates x~ of the particle. 

Denoting the determinant of the a~j by A and differentiating with respect 
to t we find that 

A/A = n u  (1.20) 

Combining (1.20) with (1.16) we get on integration 

pA = constant = Po Ao = Po (1.21) 

Here Po =- p(to) and we have set Ao - A(to) = 1 in accordance with (1.19). 
Finally, differentiating (1.18) and using (1.15) we derive the differential 
equation for the a,j 

~i~ j = --~ rcG po ~ff (1.22) 

This equation was first given by Narlikar (1963). 
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(e) Relations Involving the Spin and Shear 

If  we differentiate (1.20) and use the contracted form of (1.15) we obtain 
the relation 

)i A 2 
-~ - A-- 5 + 47rGp + His Hsi = 0 (1.23) 

From (1.5) and (1.7) we have also 

1A 
His = qis + cois + ~-A3ts (1.24) 

Hence 
1 A 2 

Hlj Hsi = qisqis - ~~ ~176 + 3A  2 
o r  

1 A 2 
Hls Hsi = qZ _ 2~o2 + -3 A - 5  (1.25) 

Here we define the spin and shear invariants co and q, both I> 0, by 

o9i s o91 s = 2092 (1.26) 

q~s qls = q 2 (1.27) 

respectively. The first definition is of  course consistent with the interpreta- 
tion of  o9 as the magnitude of  the spin vector coi where 

~oi = �89 ~osk (1.28) 

eisk being the Levi-Civita tensor. 
If  we define also a variable R( t )  by 

/ I ,  \1/3 

R - - - A l / a = t p  ) (1.29) 

then R( t )  gives a measure of the variation of  the linear dimensions of  a 
comoving volume element, or the inverse cube of  the mass density. Sub- 
stitution of  (1.25) and (1,29) into (1.23) now yields the relation 

3f~ 4zGpo 
-R- = 2o92 _ q2 _ R ~ (1.30) 

Equation (1.30), which was also derived by Heckmann & Shucking 
(1955, 1956) from their own premises, is the Newtonian analogue of  the 
relativity equation obtained for dust by Raychaudhuri (1955), It shows 
that whereas shear assists gravity in a possible convergence towards a 
singularity (R ---> 0) spin has the opposite effect. The outcome clearly cannot 
be decided by this equation alone. A further relation was obtained by 
Heckmann and Shucking from the integrability conditions for their 
potential function q~ viz. ~b,~ s = ~b,si. The same result follows however from 
our more specific condition (1.15) (which as already stated was not part 
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of the theory of Heckmann and Shucking). Combining (1.15) with the 
equation got by interchanging i and j,  and making use of (1.24) and (1.28) 
we get after some calculation 

d ( R  oat) = R2q~joaj (1.31) 

An important point now arises. In their specific models Heckmann and 
Shucking assumed that q~ = 0, so that w~ = cdR 2, where c~ is a constant 
vector. Substitution into (1.30) then shows that/~ will be positive when R 
is sufficiently small, so that apparently a singularity (R = 0) is prevented 
because of spin. In our own approach the arbitrary assumption q~j = 0 
cannot be made; the evolution of q~j is determined once the initial con- 
ditions are set. In our theory oa~ therefore varies in a different way. As a 
result total collapse in at least one direction cannot be prevented (see 
Section 2(c)). 

From (1.30) we also note the following. Having already set Ao = 1 then 
(1.29) requires that Ro = 1. Suppose now that the arbitrary epoch to happens 
to be a stationary point of A, and therefore of R and of the density p, so 
that Ao = 0 =/~o. Then (1.30) shows that at such a point 

Ao = 0, }1"o = 3Ro --- 2O)o 2 - qo 2 - 4rcGpo (1.32) 

It follows that if the spin vanishes at the stationary point then the point 
can only be a maximum of A, or of R. Also, if there is a minimum of A or 
of R at some epoch then the spin cannot vanish there. This indication that 
the mass density can go through a well-behaved maximum in the presence 
of sufficient spin is clearly of great dynamical importance. We shall see 
however that this possibility does not prevent a singularity taking place 
at some other epoch (see Section 2(f)). 

We can also obtain an expression for Zl'o = 3J~o at the stationary point 
by first differentiating (1.23) and using (1.15), to find 

= 2(   /tjk 

at the stationary point t = to. To evaluate the invariant on the right we 
express H~j in terms of spin and shear by means of (1.24) and then refer 
the result to the principal axes of shear at the instant t = to. If  Q1, Q2, 03 
are the principal components of shear, and s 02, 03 the components of 
spin along the principal axes, then reduction gives 

Ao = 0, }1"o = 3J~o = 6(Q1 02 aa  + 01 f2~ 2 + Q2 022 q- Oa 032)0. (1.33) 

This result will be used in (f). 

(f) A Fourth Order Differential Equation f o r  A 

Following Narlikar (1963) we introduce 
related to the Newtonian time t by 

= 1/2 t 

a dimensionless variable v 

(1.34) 
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Denoting differentiation with respect to z by a prime, equation (1.22) 
may be written: 

,, a i j  
ao = - -~ (1.35) 

Successive differentiation of  the determinant A =deta~i, using (1.35) 
whenever second order derivatives appear, leads to Narlikar's equation 
for A: 

A 2 A"' + 7AA" - 4A '2 + 9A = 0 (1.36) 

We note that (1.36) is unchanged on putting - z  for r so that the motion 
is time-reversible, as expected for a dust model in Newtonian theory. 
Also, since the differential equation is fourth order a solution is completely 
determined if at the initial time (t = to, �9 = Zo, say) Ao, Ao', Ao", Ao" are 
specified. In particular, if z = To is a stationary point and it happens that 
the shear vanishes there we can conclude from (1.33) that all odd-ordered 
derivatives will vanish at �9 = Zo, so that in this case the motion is sym- 
metrical about the epoch "r = %. In the general case, when Ao":~ 0, the 
motion will not be symmetrical about a peak or trough in the A - z curve. 

Narlikar's investigation of  the Newtonian models was specifically 
directed to finding whether they necessarily contained a singularity. His 
examination was made on the basis of  equation (1.36) only. Since a general 
solution in closed form was not available for this equation Narlikar explored 
the possible A - �9 development by numerical methods, with varying initial 
conditions. In doing so he missed the existence of  models whose evolution 
includes procession from a maximum to a minimum of  A, and vice versa, 
the assumed absence of  which formed a central part of  his case for the 
inevitability of  a singular stat~. In fact study of (1.36) alone obscures the 
details of  the collapse process. In our present work we wish to follow the 
evolution of the internal structure of  A, namely the a~j. This is given by 
(1.35) and it is on this equation that we shall concentrate our main attention. 
By considering a special type of solution of  this equation we shall inciden- 
tally be able to show that the general solution to Narlikar's equation (1.36) 
always contains a singularity, where A ~ 0, p ~ oo. 

2. An Axisyrnmetric Solution 

(a) Special Variables for a Model Spinning about the xa Axis 

The basic equation to be satisfied is 

a,, a~j 
,j = - - ~  (2.1) 

Consider a model for which the x3 axis is both spin-axis and axis of  sym- 
metry of the motion. This can be described by 

alj = x (2.2) 
0 
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such that  a~ = 6 u (epoch z = Zo). Equat ions  (2.1) and (1.18) (replacing a 
dot  with a pr ime) lead to the maintenance  o f  the fo rm (2.2) and an associated 
H u given by  

H u = H (2.3) 
0 

where 

H = x x '  -}- u u '  ] 
x 2 + II 2 

t/' (2.4) 
= where ,12 = x 2 + u 2 

q 

Z p 
K = - (2.5) 

z 

X~/' - -  X '  H 
co x2 + u2 (2.6) 

The  Eulerian coordinates  o f  the particle which at  z = Vo was at  xfl  are 
given by  

x 1 = x x l  ~ - -  Rx2~  I 

x2 uxl ~ + xx=~ (2.7) 
x 3 z x 3  ~ J 

z(z) is the expansion factor  in the xa direction. I f  r 2 = xl  2 + x2 2 then 

r = qro (2.8) 

so that  q('c) is the expansion factor  in the cylindrical radial  direction. The 
velocity o f  the particle is given by  

xa' = Hx, - oox2 

X2'  = O.)Xl. § H x  2 

xa' = Kx3 (2.9) 

indicating a universal mot ion  of  extension (or contract ion) radially and 
axially together  with a twisting abou t  the axis at angular  velocity co(z). 

The  coordinate  axes x~ are evidently the principal  axes of  shear and the 
principal  components  o f  shear are 

Q,(z) = { � 8 9  K),  �89 - K),  - - ~ ( H -  K)} (2.10) 
where 

H _ K = r f  z' (2.11) 
t/ z 

To  obtain  the general value of  the spin we m a y  use the fact that  angular  
m o m e n t u m  abou t  the spin axis, following the mot ion,  will be conserved. 
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This requires 

so that 

p d x l  dx2 dx3 r 2 o9 = Po d x l  ~ dx2 ~ dx3 ~ ro 2 o90 (2.12) 

(D O 
og(T) = ~ (2.13) 

Referring to (1.31) we then see that we cannot set ql~ = 0 permanently, as 
done by Heckmann and Shucking, without inconsistency with (2.13). 
For  under this condition (1.3 l) would yield 09 = ogo/R 2 where in the present 
motion 

A = R 3 = t/2z (2.14) 

and the two results for o9 would only be reconcilable if q = z. While the last 
equality is what would follow from (2.11) as the condition for zero shear 
we are not in fact permitted to set r /=  z because the equations of  motion, 
discussed in Section 2(b), already determine the evolution of  ~/ and z 
independently. 

(b) E q u a t i o n s  o f  M o t i o n  a n d  In t egra l s  

The equations (2.1) give for the case (2.2) the following equations 

1 
z" = - - - -  (2.15) 

X 2 + U 2 

X" ~ - -  X/Z 
x2 + u2 (2.16) 

U" U/Z 
x2 + u2 (2.17) 

We note that z" <~ 0 for all epochs of  the motion, which in itself guarantees 
collapse along the spin axis in the finite past or future. Combining (2.15), 
(2.16) we get 

X" g - -  XZ" = 0 

and on integrating once there follows 

x ' z  - x z '  = const = Ho - Ko (2.18) 

suffix zero indicating as usual evaluations at T = To. Similarly we get 

u'  z - u z '  = o9o (2.19) 

u' x - ux '  = o9o (2.20) 

For  the general value of  o9 as given by (2.6) we then derive 

U t X - -  UX J (.D O 

co = x2 + u2 r/2 (2.21) 

in agreement with (2.13). 
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Combining (2.20) with (2.15) we can write 

d i -COo 

Hence 

u = - x  tan 0, 0 = COo(Z' - Ko) 

Also by (2.19), (2.20) we have 

COo(Z - x) = (Ko - Ho)u 

Whence,  assuming coo ~ 0 ,  

X - -  

363 

where 

(2.22) 

(2.23) 

z" = (cos o -  !(Ko -_ eo)/coo] sin 0)2_] 
Z 2 / 

(2.26) 
0 = COo(Z' - Ko) j 

The mot ion  is therefore completely determined by the solution o f  (2.26). 
To interpret the impor tan t  parameter  0, we note that  between epoch 

z = Zo and the general epoch z the universe turns right-handedly about  the 
x3 axis th rough  an angle tan -~ (u/x). Hence 0 is the angle through which it 
turns left-handedly. Since we can assume without  loss o f  generality that  
COo > 0, it follows f rom the fact that  z" < 0 for all finite x, u that  0 is mono-  
tonic decreasing as the mot ion  proceeds. 

It  is now possible to show that  shear always develops in the presence of  
spin, even if zero initially. In  the model  presently considered the shear is 
zero at z = Zo if  H o -  Ko = 0. Subsequently, in accordance with (2.11) we 
have 

(d/dr) (sec 0) using (2.24), (2.25) 
H - K = sec 0 ' 

COo sin 20 
- 2z ~ , ~ 0 at general z. 

Hence shear develops in the presence o f  spin, even if zero initially. 
F r o m  (2.26) we derive an expression for z in terms o f  0 as follows. We 

write (2.26) in the form 

dO = -co~ 2 (cos 0 - [(Ko - Ho)/coo] sin 0) 2 
dz zZ(O + coo Ko) 

1 - [(Ko - eo)/coo] tan 0 (2.24) 

z tan 0 
u = 1 - [(Ko - Ho)/COo] tan 0 (2.25) 
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0 

1 1+ f  ,+(DoKo)ds 
z = J((Do cos s - (Ko - Ho) s in s )  2 (2.27) 

o 

Assuming  Ko - Ho ~ 0, pu t  

(Do 
t a n ~  = [ K o _  Ho I , (Do>0,  0 < 5 <  n/2 (2.28) 

Then  singulari t ies  occur  in the integral  in (2.27) at  the values o f  s given by  

s = rc - e, - 5  i f  Ko Ho (2.29) 

s = ~/2, - re /2  i f  Ko - Ho 

The  mo t ion  evident ly  depends  on two paramete r s  COo(> 0) and  K o -  Ho. 

(c) The Case Ko - Ho > 0 

(i) Ko > 0 

F i r s t  we integrate backwards in z t ime f rom the epoch  z = zo.As z decreases 
0 increases f rom zero mono ton ica l ly  towards  the value 0 = 5 when the 
in tegrand  in (2.27) becomes singular.  F o r  the range 0 < 0 < 5 the in tegral  
in (2.27) increases mono ton ica l ly  with 0, so tha t  z mono ton ica l ly  decreases.  
Take  two values o f  0 near  0 = ~, say 0o, 01 (01 > 0o). Put  s = ~ - 8 and  let 

- 0o = eo, 5 - 01 = el. Then  keeping 0o fixed and  increasing 01 towards  5 
we find tha t  

01 
(s + (DoKo)ds _ •  (DoKo- )d  

J ((DoCOSS - (Ko - H o ) s i n s )  2 = (Do2j{cos (~ _ e) Z 70~ ~-s~( -~_  e)}z 
0o ~o 

E1 

~ - - -  f &  
1 (5 + coo Ko) sin 2 e ~- 

(DO 2 
fro 

1 / 1 1 \ 
( 5 +  (DO Ko)sin2~ ~ - -  ~ )  

(.DO 2 

-+ ~ as sl  -+  0 (2.30) 

Hence  as 0 ~ 5 the in tegral  in (2.27) ~ or. Therefore  z tends mono ton ica l ly  
to  zero.  

Both  z '  and  z" remain  finite as z -+  0. In  fact  since 0 = (Do(Z' - Ko) ~ 5 
we ob ta in  

5 
z '  -+ Ko + - -  (2.31) 

(D o 
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o r  
fD0 2 

z ~ (~ + too Ko)sin 2~ (o~ - c%(z' - Ko)) (2.32) 

Differentiating we get 

so that  

--(-003 Z" g' 
("  + too Ko) sin 2 

z" ~ - ( ~  + 090 Ko) 2 sin 2 
COo4 (2.33) 

I t  then follows f rom (2.15) that  q also remains finite as z ~ 0: 

c~176 (2.34) 
r / ~  (~ + too Ko) sin 

Therefore  f rom (2.21) we find that  the spin remains finite: 

(ct + ~Oo Ko) 2 sin z 
09 -+ (2.35) 

(.003 

We infer therefore that  the nature  o f  the Newtonian  singularity in the 
presence of  spin is a collapsed rotat ing 'pancake ' ,  o f  finite angular  velocity 
and finite expansion.  

Fo r  the limiting radial  shear we find as e -+ 0 

r/-- ~ _ (~ + too Ko)sin2~ log ~ -+ + ~  (2.36) 
r/ o903 

and so 

q, s in~ loge -+ + ~  (2.37) 
(Do 

For  the behaviour  of  the expansion determinant  A near  the singularity 
(at z = z , ,  say) we now obta in  

A = ~176 
(~ + tOo Ko) sin 2 ~ (z - z , )  - 3(z - z , )  2 log (~ - T,) + 

+ 0(z - ~,)2 (2.38) 

This is to be compared  with the well-known behaviour  of  the isotropic 
Newton ian  model  near  its point  singularity, at which A ~ ( z -  z,)z.  The  
presence o f  spin therefore has the effect o f  speeding up the rate o f  expansion. 

Integrating forwards in z time f rom z = Zo, we note  that  0 start ing f rom 
zero is mono ton ic  decreasing through negative values. Hence the integral 
in (2.27) is mono ton ic  decreasing (z increases) as long as 0 > -ogoKo. I f  the 
value 0 = -O9o Ko is reached then z has reached a m a x i m u m  (z'  = 0, z" < 0) 
and thereafter  the integral S ~ will start  to increase and z to decrease. N o w  
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0 = - c o o K o  will  be reached p rov ided  z does no t  become infinite for  
0 > -COoKo. This  requires  

-o,fr:o (s + COoKo)ds } 
(o9o cos s - (Ko - Ho) sin s)  z > - 1  (2.39) 

0 
and  cr - zc < - C O o  Ko 

In  this case 0 will fall  be low the value -o9oKo unti l  as 0 --~ a - n a s ingular  
s tate is again  app roached  and  z ~ 0 (z ~ ~ , ' ,  say). Al l  results a t  the second 
s ingular i ty  are  got  by  pu t t ing  ~ - n for  ~. 

On the o ther  hand  i f  (2.39) is v io la ted  such tha t  

--~176 1 

f (2.40) 
0 

with ~ - ~ < -COo Ko) 
then when 0 -+ 01/> -COo Ko we shall  have z -+  ~ .  F ina l ly  i f  

- rt >/-COo Ko (2.41) 

then  as 0 --* 01 > ~ - zr we again  have z -+ m. 
The  asympto t i c  character is t ics  o f  the mode l  when z ~ ov are seen as 

follows.  By (2.24), (2.25) we have at  al l  epochs  

z sec 0 
1 - co t  ~ tan  0 (2.42) 

Accord ing ly ,  when 0 ~ 01, z --~ m we have 

z sec 01 

r / ~  1 - cot  ~ tan  01 

Hence  referr ing to (2.10), (2.11) the componen t s  o f  shear  Q , - +  0 when 
z -+  oo. Also ,  since q -+  co the spin o9 -+  0. Thus  the mode l  tends to the 
i so t ropic  state when z - +  co. Moreover ,  since z'-+ (01 + ogoKo)/ogo it  
fol lows tha t  

(01 + COo Ko) 
z ~ �9 as �9 -+ ~ (2.43) 

(D O 
while 

Hence  

sec 01(01 + Wo Ko) 
T (2.44) 

o9o(1 - co t  ~ tan  01) 

sec201(01 +c~ a 3 
A = r/z z ~ ~ c o T ~ n - ~ ) z  ~ (2.45) 

and  the l inear  expans ion  fac tor  R( , )  is a sympto t ica l ly  p r o p o r t i o n a l  to z. 
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In  the case when the model  evolves f rom a singularity to a singularity 
it necessarily passes th rough  a m a x i m u m  of  the expansion determinant  A. 
I t  will also be possible for  a m i n i m u m  to be present,  at  z = Vo say, i f  at  tha t  
poin t  the spin relative to shear satisfies the condition. 

2(Do 2 - qo 2 - 3 > 0 (2.46) 

in accordance with (1.32), using r time. Likewise, when the model  expands 
indefinitely f rom a singular state there may  be an intermediate m a x i m u m  
of  A, fol lowed necessarily by a min imum.  Specific models  possessing these 
var ious characteristics will be illustrated in Section 3. 

I t  will be noted that  the total  angle through which the universe turns in 
any  o f  the mot ions  discussed has an upper  limit o f  rc radians. The  upper  
limit applies to the twist taking place between two singularities. 

(ii) Ko < 0 

In  this case the mot ions  are essentially similar to those already discussed, 
the epoch z = Zo s imply being chosen at a different stage in the evolution. 
However  in the case when z--> oo the model  is collapsing f rom infinite 
dispersion to a singularity (possibly passing through a m in imum of  A 
followed by a maximum) .  

Finally,  for  the case Ko - Ho > 0 we integrate (2.27) to express z explicitly 
in terms of  0, in the fo rm 

tan ~ t sin lz = 1 + ~ [ cos ~ log (cos 0 - cot ~ sin 0) + 

0 + O~o Ko 0 sin 2 ~ - ~Oo Kot 
+ 1 - cot  ~ tan 0 

(2.47) 
J 

to which we add 

Z 
X 

1 - cot ~ tan 0 

z tan 0 
U =  

1 - c o t  ~ t a n  0 

zsec0  

~ / -  1 - cot ~ tan 0 

(D o 
tan 

Ko- Ho 
0 = COo(Z' - Ko)  

(2.48) 

(d) T h e  C a s e  Ko - H o  < 0 

This case consists o f  the t ime reversals o f  the various models  arising 
under  (c). The m a x i m u m  limits o f  the mot ion  are now 0 = n - a and - a ,  
where a is defined by (2.28). As z increases 0 decreases as before. 



368 w .  DAVIDSON AND A. B. EVANS 

(e) The Case Ko - Ho = 0 

Here  the shear at z = Zo is zero but,  as shown in (b), shear subsequently 
develops in the presence o f  spin. Referr ing to (2.24)-(2.26) we have for  
this case 

X ~ Z  

u = - z  tan 0 

,, cos z 0 ) (2.49) 
z = -  z---- ~ / 

! 

o = ~o(Z'  - g o ) J  
and by (2.27) 

0 

1 : 1 +  1 ((s+cooKO) ds 
(2.50) 

Z (DO 2 J COS 2 S 
0 

The  singularities o f  (2.50) occur  when s = re/2, - ~ / 2  and the possible 
mot ions  are essentially the same as for  the case when Ko - Ho > 0, with 
now set equal  to ~/2. Corresponding  to the general  expression for  l /z  in 
(2.47) we now get by  integrat ing (2.50). 

1 z = 1 q~ ~ { l o g c o s  0 + (0 + COo Ko) tan 0) (2.51) 

I f  z = zo is a s ta t ionary value of  A then Ko = Ho = 0. In  this case bo th  
z and x also have s ta t ionary values there. In  accordance with Section l ( f )  
the A - z  g raph  will then be symmetr ica l  abou t  z = %. In this case the 
mot ion  can only be f rom a singularity to a singularity since we have z '  = 0 
at  z = % and z"< 0 for  all "c, the singularities occurring at  0 = ~ = re/2 
and 0 = - ~  = -re/2. 

(f) The Existence of a Singularity in the General Solution of Narlikar's 
Equation (1.36) 

Nar l ika r  (1963) did not  succeed in showing that  his equat ion (1.36) 
always possessed a singularity. By means of  the present  axisymmetr ic  
solution o f  the equations (1.35) for  the a~j we m a y  show tha t  A -+ 0, 
p -+ ~ ,  at  some z in every solution of  (1.36). 

Suppose there is a solution of  (1.36) wi thout  such a singularity. Then a 
lower bound  to A must  exist. Since A is cont inuous it will assume the 
lower bound  value as a strict mininaum. Tha t  is the lower bound  cannot  be 
approached  asymptot ical ly  with all derivatives vanishing because equat ion 
(1.36) would then be violated. Let  the strict m i n imum occur at  z = Zo and 
set Ao = 1 as before. Then at the min imum the solution will have Ao' = 0, 
Ao" >10. However  if  Ao" = 0 a m in imum requires Ao" = 0 and  then (1.36) 
shows that  Ao" = - 9 ,  so that  the s ta t ionary point  would be a m a x i m u m  
and not  a min imum.  Hence  the m i n i m u m  has 

Ao = 1, Ao' = O, co > Ao" > 0, oo > Ao" > -o~ (2.52) 
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Because of  the argument in Section l(e) in connection with (1.30) we 
need not consider cases in which the spin vanishes at T = %, which always 
possess a singularity. 

Compare now (2.52) with the axisymmetric solution given by (2.2), (2.3). 
At a minimum of  A occurring at -c = % we have for the axisymmetric case 

Ao= 1 t Ao' = 2Ho + Ko = 0 

Ao" = 2O9o 2 - -~Ko 2 - 3 > 0 (2.53) 

Ao" 6Ko O9o 2 + 

Clearly, whatever the values of A o", Ao" specified by (2.52) for the general 
solution, we can choose by means of (2.53) values of  o9o, Ko which give the 
same values of  Ao", Ao" in an axisymmetric solution. But we have seen in 
Section l(f) that as far as the A - �9 behaviour of any solution of (1.36) is 
concerned it is completely determined once initial values Ao, Ao', Ao", Ao" 
are specified. That is, although the behaviour of the a,j will in general be 
different from those of  the special axisymmetric solution the behaviour of  
A = deta,j  will be the same. But we have seen that in the axisymmetric 
solution there is always a point where A -+ 0, p -+ co. Hence the assumption 
that the solution of  (1.36) had no singularity leads to its contradiction; 
there is always such a singularity. 

3. Representative Examples of the Spinning Axisymmetric Models 

(a) The ease Ho = Ko = O, o9o = 5 

In this model the reference epoch �9 = ~o (taken to be zero) is one of zero 
shear. It is also a stationary point of  A since the condition 2Ho + Ko = 0 
is satisfied, and the relation (2.46) shows that it is a minimum. In accordance 
with the analysis of Section 2 the A - z graph will therefore be symmetrical 
about the trough at z = 0, have two peaks on either side of  the trough and 
plunge to the �9 axis at the two singularities which must exist in this case 
(at c~ = • The computed graph is shown in Fig. 1 and clearly demon- 
strates the well-behaved minimum of  A, maximum of  density p, at z = 0. 
As predicted by the theory the gradient A' = dA/dz at the singularities is 
non-zero. 

The variation of  z and t/with ~ is graphed in Fig. 2. The finite gradient 
z' at the singularities and the finite radial expansion there relative to the 
state at z = 0 is in accordance with the theory. The values of all quantities 
obtained by numerical integration were found to agree very closely with 
the theoretical predictions of  Section 2. It should be noted that there is a 
change in sign of the gradient t/' just after the first singularity and just 
before the second. Thus starting from the singularity at negative T, the 
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~4 -3 -2  -~. 0 1 2 3 4 "c 

Figure 1 . - -The  graph o f  the computed  relation between A and r for the case Ho = Ko = 0, 
fOo = 5 ,  

z 

i 
-4  -3 -2  -1 0 I 2 3 

Figure 2 . - - T h e  computed  t / -  r and z "  r relations for Ho = Ko = 0, mo = 5. 
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gradient q' = +oo (equation 2.37) but in a very short interval this is reduced 
to zero and changes smoothly over to being negative. This is a dynamical 
effect associated with the fact that in the present model the spin at the 
singularity is relatively small. The intense gravitational field near the 
singular state therefore very quickly checks the radial expansion and 
commences to build up the spin in a radial contraction to the maximum 
of  r /at  z = 0. 

Figure 3 shows for this model the graph of  Y =  A" - �89 against 
X=�88 the variables used by Narlikar (1963) in his numerical 

-2O 

I I i 

X 

Figure 3.--The graph of Y = A" - � 8 9  against X = � 8 8  for the case Ho = Ko = 0, 
COo = 5. Since this case is symmetrical about the time origin the same X -  Y curve 
describes the evolution for r > 0 and r < 0. 

exploration of  equation (1.36). We plot only the region ~ > 0, since the 
present case is symmetrical yielding the same X -  Y curve for z < 0. The 
graph shows that Narlikar was in error in believing that there were no 
models passing between a minimum ( X =  0, Y >  0) and a maximum 
(X = 0, Y < 0) of  A. In particular, curves I I  of  Narlikar 's  Fig. 1 are incorrect 
in demonstrating models apparently moving from a minimum direct to a 
singularity (at which d Y / d X - - ~ - 2 ) .  The curves must first pass to a maxi- 
mum at X = 0, Y < 0 before moving to the singularity, as shown in the 
present example. On the other hand Narlikar 's  models I are possible (and 
were confirmed in our own investigation); they arise in cases where there 
is never sufficient spin relative to shear and gravitation to create a minimum 
in A, nor sufficient velocities for escape to infinity. Hence there is one 
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F i g u r e  4 . - - T h e  A - �9 r e l a t i o n  for  H o  = - 0 . 2 5 , / C o  = 0 .50 ,  coo = 2.5.  
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F i g u r e  5 . - - T h e  g r a p h s  o f  ~ a n d  z a g a i n s t  �9 for  the  c a s e  H o  = - 0 . 2 5 ,  Ko = 0 .50 ,  COo = 2.5.  
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10 4 

10 

z~ 

~ 1 i  ' , , ..... , 1~ - 0 2 ~ ~ ~ 10 12 14 '1~ 

Figure 6 . - - T h e  computat ion of  A against t for the case Ho = - 0 . 2 5 ,  Ko = 0.50, COo = 7 
with ,4 scaled logarithmically.  A n  arrow indicates indefinite extension of  the curve in 
that direction. 
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F i g u r e  7 . - - T h e  t / -  t and z - �9 relations for Ho -- - 0 . 2 5 ,  Ko = 0.50,  too = 7. 
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Figure 8 . - - T h e  X -  Yre lat ion  for/-/'o = -0 -25 ,  Ko -- 0.50, COo = 7. 
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10:10:10" A IC l I ~ 

_I 0 40 

Figure 9 . - - T h e  graph of ,d  against v for the c a s e / / o  = 2, K. = 1, COo = 5 x 10 -4. 
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maximum of  A and two singularities in the complete development of  such 
cases. 

(b) Ho = -0.25,  Ko = 0"50, COo = 2"50 

Two unequal maxima of  A feature in this model which has non zero 
shear at the minimum lying at z = To = 0 between the two maxima. In 
this case equation (2.39) of  Section 2 holds so that there are two singulari- 
ties. Although the material has a positive z motion at the minimum it is 

10-1 �84 

10 

107 

10 ~ 

10 20 30 

,I-- q=qL* 

~----'q =qimi~ 

Figure 10.--Graphs oftl against �9 (full curve) and z against ~ (broken curve) for the case 
/-/o : 2,  K o  = I ,  COo : 5 x 10  -4 .  The value t/= t/, on the ~t curve is the singularity value. 
The singularity value of z is zero. 

insufficient for escape to infinity and final collapse follows. Once again 
as the singular state is approached the ~1 expansion is checked by the 
gravitation field and flips over to a short contraction before z - +  0. The 
computed A - ' c  development is shown in Figure 4, the z -  v and 7 / -  
relations in Fig. 5. 

(c) Ho = -0"25, Ko = 0"50, co o = 7 

Here there is a maximum of  A followed by a minimum where the spin 
relative to shear and gravitation is sufficiently great combined with the z 
motion to carry the material to indefinite expansion. The relevant expansion 
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criterion is equation (2.41) in this case. The A - z computation appears in 
Fig. 6 where the scale of  A is logarithmic. The z - z and q - z curves are 
shown in Fig. 7. In Fig. 8 we give the X -  Y relation for this model;  after 
the A minimum (X = 0, Y > 0) the X -  Y curve maintains Y > 0 and is 
finally asymptotic to a gradient dY/dX= 2/3 where A -+ oo like z a. This 
illustrates another type of  X -  Y curve not found by Narl ikar in his 
numerical exploration of  the X -  Y differential equation. 

(d) Ho = 2 ,  K o -  1, coo = 5 • 10 -4 

Here 2Ho + Ko ~ 0 so that the epoch z = Zo is not a stationary value of A 
In fact the two turning points o f  A in this model occur extremely close to 
the singularity. Since Ko - Ho < 0 the possible singularities are at u - 
and - a ,  where in this case tan~ -- COo = 5 x 10 -4 giving a ~ 5 x 10 -4 tad. 
Thus integration backwards in z from z = 0 towards 0 = u - a leads to a 
singularity in analogy with Section 2(c)(i), setting u - a for c( in all results 
there. Tracing forwards in z-time from the singularity A first increases to 
a small maximum (equal to 5.56 x 10 -l~ and then drops down to a mini- 
mum (equal to 2"63 x 10-1~ Both these turning points occur within a 
z-time 10 -4 from the singularity. The graph of  A then climbs steadily to 
A = 1 at z = 0. Integrating forwards from z = 0 this is a case when the 
analogue of  (2.41) occurs, i.e. putting u - a for a, so that z -+ ~ when 
0 -~ 01 > - a .  Turning to the radial coordinate q first rises slightly f rom its 
'pancake '  value 1/. -- 1-59 x 10 -4 at the singularity and then, again within 
a z-time of  10 -4, passes through a maximum, quickly followed by a mini- 
mum (equal to 5.13 x 10-s). It  then increases monotonically to infinity. 
The computed graphs of  A, ~/, z against z appear in Figs. 9, 10; their scale 
however is insufficient to show the above details of  behaviour near the 
singularity. 

(e) Comparison with the Actual Universe 
In the preliminary account of  this work (Davidson & Evans, 1971) 

model (c) was compared with the universe. This gave a satisfactory matching 
of present isotropy, Hubble time and the estimated age of  the universe. 
The present spin was found to be ~10 -12 rad yr -~ which is certainly smaller 
than the upper limit 7 • 10 -11 rad yr -1 deduced by Kristian & Sachs (1966) 
by direct observation of  galaxies. However it is considerably higher than 
the upper limit of  about  10 - is  or 10 -16 rad yr -1 (depending on the cosmo- 
logical parameters) which has been construed by Hawking (1969) to follow 
from the limits of  anisotropy of  the 3~ microwave radiation. 

The validity of  Hawking's  reasoning is a difficult matter  to assess. I f  the 
radiation shared in the tendency to isotropy which we have found charac- 
teristic of  the Newtonian ever expanding models, then his assumption that 
it retains the anisotropy of  matter  at last scattering would be invalid. But 
in any case we shall now make use of  model (d) to show that a satisfactory 
matching of the present properties of  the universe can be achieved, as well 
as a very much lower value for the present spin. 
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TO identify the present epoch t = h in the actual universe with an epoch 
-c = zl in a model requires that the model should have come close to a state 
of  isotropic expansion at z = 21. Also the average of  the radial and axial 
rates of  strain in t time must be identified with the Hubble constant T - L  
That  is, in terms of  z derivatives 

Hence 

2 \ z  ~//1 
(3.1) 

+ , (3.2) 

where Pl is the present mass density in the model. In this paper we take 
T =  1.3 x 10 l~ yr and identify Pl with the conservative value 1.2 x 10 -3~ 
g cm-L Hence for a satisfactory comparison with the universe at the 
present epoch on this basis a model must have at z = 21 

1{z,+ 
~2 \ z -~] l A~/2 = 4.25 (3.3) 

and a sufficiently close equality of  (z'/z), (q'[rl) to achieve the observed 
degree of  isotropy. 

Analysis of  model (d) shows that at -c = 30, z' /z  = 0-028, ~/'/q = 0.033, 
each of  which is less than 10 ~o f rom their average. This is well within the 
isotropy observed in measurements of  Hubble 's  constant. Also at that 
epoch the model gives A1 = 1.88 x 104 so that the criterion (3.3) is very 
closely satisfied. For  the density Po = Pl A1 at the reference epoch z = 0 
we therefore get the value 2.26 • 10 -26 g cm -3. This means that a unit o f z  
time has to be identified in t time with 1.26 x 10 ~6 s or 3.99 x l0 s yr. Hence 
the age of  the model universe between the singularity (which occurred at 
z ,  = -0"407) and the present epoch (z = 30) is 

a = 1"23 x 10 i~ yr (3.4) 

in satisfactory agreement with all astronomical evidence. 
The value of t / in  the model at the epoch z = 30 was found to be ~h = 36.30. 

Hence the present spin of  the universe would be 

r o [3"80  • 10 -7  r ad /un i t ,  time, o r  
~ol = - -  = 10_16 (3.5) r/12 t9"35 x rad yr -1 

This is o f  the order of  the upper bound deduced by Hawking f rom the 
observations of  the microwave radiation. We emphasise that models with 
even lower spin at the present epoch could easily be found, without removing 
the characteristic rotating 'pancake '  origin of  the Newtonian spinning 
models. 

In this connection it should be noted that for the model (d) under dis- 
cussion the spin at the singularity is very high compared with, say, a model 
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of  type (c) whose spin at the identified present epoch is so much higher. 
This is because relative to states of  comparable density the radial shrinkage 
as the singularity is approached in the (d) model is in marked contrast to 
the (c) model where there is actually a prolonged radial expansion (apart 
from the small flipover at the last moment). Thus in the (d) model at the 
singularity ~/. = 1.59 • 10 -4 so that at the moment of  singularity the spin 
has the value 

09. = 4.96 • 10 -s rad yr -1 (3.6) 

even although the total angle turned through by the universe in its ~10 ~~ yr 
history is less than ~z radians. As a comparison the present spin of  the 
collapsed Galaxy is N10 -7 rad yr -1. 

I f  a spin such as (3.6) was realised in our early universe it could not fail 
to affect fundamentally the nature of  its history. We note the omnipresence 
of  spin in objects in our observed universe ranging from planets, stars and 
pulsars to galaxies, with evidence of  rotation in clusters and superclusters 
of  galaxies. It would therefore seem naive to suppose that on an even larger 
scale spin was somehow unimportant despite the overwhelming evidence 
of  a high density state in the past. This would seem especially relevant if it 
were the case that our observable universe had suffered a gravitational 
collapse in its prehistory. At the same time, if the collapsed state were of  
the nature of  a rotating disc before the big-bang developed the theoretical 
problems would immediately seem more tractable than those of  the point 
singularity in isotropic models. 
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